If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+4x^2+9=160
We move all terms to the left:
3x^2+4x^2+9-(160)=0
We add all the numbers together, and all the variables
7x^2-151=0
a = 7; b = 0; c = -151;
Δ = b2-4ac
Δ = 02-4·7·(-151)
Δ = 4228
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4228}=\sqrt{4*1057}=\sqrt{4}*\sqrt{1057}=2\sqrt{1057}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{1057}}{2*7}=\frac{0-2\sqrt{1057}}{14} =-\frac{2\sqrt{1057}}{14} =-\frac{\sqrt{1057}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{1057}}{2*7}=\frac{0+2\sqrt{1057}}{14} =\frac{2\sqrt{1057}}{14} =\frac{\sqrt{1057}}{7} $
| 3x^2+4x^2=151 | | |4x+7|=|4x+5| | | (t-4)°2=(t+4)2+32 | | 7x²+60=3(x-4)/400 | | -3x-4x+10=10 | | 12/(12+x)=3/11 | | 9=41-2x | | 2200t-16t^2+320t=0 | | 1000t+1200t−16t^2+320t=0 | | X+(-5.4)=7x | | 2(r+5)−2(2r−8)=42 | | 89+2x+76+x=360 | | 4(x-8)=2x-48 | | 130+12t-16t^2=0 | | 5(x-8)=-9x-26 | | 5/19x+2=6/19x | | 0.5(9x+14)=59 | | 7(1/2x+4)-2x=2x+91/3-4x | | 5y+18=63 | | 5t^2-29t-42=0 | | -6x+8=5x-4 | | x^2+20*x-5120=0 | | -11x=24.2 | | 24.2+19x=30x | | 16x+18=14x | | 16x+18=15x | | 5x-3x+4=4+20 | | 4x-70=2x | | 15/4–7p/1=9 | | 4x+6=350 | | 0=2X^2+4x-15 | | -25x50+1=0 |